
 

 
 
 
 
 
 
 
 
 
 
  

Artificial Intelligence Modelling: 
Data Driven and Theory Driven Approaches 

 
 
 

Klaus Manhart 
 
 

Überarbeitete Fassung eines Beitrages, erschienen in:  
Troitzsch, K ./ Müller, U./ Nigel, G./ Doran, J.E. (eds.),  
Social Science Micro Simulation, Springer, Berlin 1996 

 
 

www.klaus-manhart.de 
mail@klaus-manhart.de 

 
 

München, September 2007 

http://www.klaus-manhart.de
mailto:mail@klaus-manhart.de


© Klaus Manhart: Data driven and Theory driven Modelling                                                                          2

Abstract 
 

Compared with conventional computer models, AI based modelling offers a wide range of 

decisive advantages for the social sciences: theoretical knowledge does not have to be 

quantified, is coded explicitly and modularly and its conclusions can be explained and 

justified. AI or knowledge based systems can be used in the social sciences for both theory 

driven and data driven model building. In the case of the theory driven approach, 

knowledge based modelling allows the translation of nearly any qualitative theory into a 

symbolic program in order to discover new conclusions or to investigate the logical 

features of the theory. With the data driven approach, an attempt is made to replicate 

empirical data with generate and test programs as well as possible and, in this way, to 

discover theoretical mechanisms inductively. The transitive graph model is used to 

illustrate how theoretically substantial conclusions and hypotheses are generated with the 

aid of a mixed approach, which fluctuates between theory and data.  

 

1. Three dilemmas of conventional computer models 
 

Building Theories is the central aim of empirical science and the computer is a valuable 

supporting tool for doing this. On the one hand, existing theories can be modelled precisely 

in form of computer programs, on the other hand theories and explanation facilities can 

develop from modelling empirical data by and by. Beyond traditional empirical methods, 

computer simulation is regarded more and more as the second pillar of empirical science 

and key technology for the next decades. 

 

However, the powerful theoretical potential of computers contrasts to their factual use in 

the empirical sciences. Empirical scientists view computers mostly as number crunchers 

doing arithmetical operations on figures. Especially in the humanities and social sciences 

the dilemma arises, that most theories exist in verbal form and cannot be translated into 

numerical, conventional models as used by natural scientists (for example differential 

equations).  

 

The first and most important problem with social science computer modelling therefore is, 

that social science knowledge often has qualitative, non-numerical form, which cannot be 
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described by numerical algorithms of traditional programming techniques. For example, in 

the social sciences there are typically qualitative relations like: 

- if x then y 

- if x then not y 

- the bigger x the bigger y. 

Conventional modelling demands specifying these relations in exact, quantified terms. This 

means either to state social science knowledge "precisely", but in an artificial and brute 

force manner or thus not to be able to apply it to computer programs. This is the first and 

most important dilemma of social science knowledge in the frame of numerical modelling. 

 

A second problem with conventional computer models is that theoretical knowledge often 

is hidden in non-theoretical code. In every model there has to be code elements for 

program control, for user interface, for reading data and so on. These parts have no relation 

to the theoretical knowledge. In conventional programs a strictly separation of domain 

specific knowledge and other program elements is to carry out very difficult. The reason is 

that in conventional programming methods a strict defined interface between domain 

specific and non domain specific parts is lacking. Various authors, e.g. Frijda (1967), have 

empasized that this partition in computer programs is very difficult to obtain. 

 

Boden (1984) refers to a third problem of conventional models: She writes, that the 

reasoning - or rather the calculation - behind the conclusions generated by these numerical 

models is commonly opaque to all but the mathematical initiate. This makes it very 

difficult for politicians and the general public to produce sensible critiques of the 

inferences and assumptions involved, or even to understand such critiques when produced 

by other social scientists. 

 

2. AI based modelling 
 

In the eighties a few sociologists, social psychologists and anthropologists have discoverd 

the power of Artificial Intelligence (AI) for avoiding or solving these problems (for 

example Brent 1986; Sylvan/Glassner 1985; Read/Behrens 1989; for an overview and 

general introduction: Benfer/Brent/Furbee 1991). AI offers concepts, techniques and tools 

to reduce the three dilemmas and leads to a lot of additional advantages. The general AI-
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modelling view is the view of computers as symbol processing machines doing operations 

on any symbol. The key term is the concept of knowledge representation. Knowledge 

representation means the formal representation of qualitative, semantic, non-numerical 

information. For modelling uses, knowledge representation has three dimensions:  

1. knowledge representation as abstract concept means formalisms like logic or higher 

order structures such as semantic nets, frames or scripts (for an overview see e.g. Rich 

1983). In our context, especially first order logic is a very important representation 

formalism because nearly any qualitative theory can be translated into this formalism 

(Kowalski 1979). 

2. declarative programming tools and techniques for implementing knowledge on a 

concrete machine like Lisp (Winston/Horn 1981), Prolog (Clocksin/Mellish 1984) or 

higher order tools, for example hybrid systems. 

3. knowledge based systems or expert systems as a possible architecture with well-known 

features and advantages (e.g. Waterman 1986; Merritt 1989). 

 

The focus of my interest is knowledge based systems. Knowledge based systems or expert 

systems are computer programs, which represent and process the knowledge of a human 

expert. In these expert systems knowledge is explicitly coded, mostly in form of facts and 

if-then-rules. Since rules are the dominant formalism for representing expert knowledge, 

these programs are also called rule based systems.  

 

The architecture of a rule based system consists at least of three parts (Merritt 1989): 

1. a knowledge or data-base which contains the qualitative data of a certain knowledge 

domain; 

2. an inference engine to deduce new knowledge from the old one; 

3. an explanation part, which shows the user, which facts and rules was used for 

deduction. The explanation part makes the action and internal structure of the system 

transparent. 

 

The relation between scientific theories and knowledge based systems is as follows: 

knowledge based systems represent the domain-specific knowledge of human experts. 

Qualitative theories also contain domain-specific knowledge and scientists, working with a 

theory, can be regarded as experts on this theory. Therefore, knowledge based programs 

are the preferable form of computer models to represent these qualitative theories. In this 
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case, we talk of knowledge based models. Thus, a knowledge or rule based model is a 

computer program, which represents some aspects of a real system or a theory in symbolic, 

rule form. The knowledge base contains the social science knowledge and the inference 

engine deduces new facts from the old one. A fully implemented expert system can even 

explain, how these facts are deduced, e.g. which rules are used for deduction. This type of 

symbolic programs expands social science modelling in a decisive manner and releases it 

from the straitjacket of traditional modelling concepts. The following points emphasize 

important solutions for the above mentioned dilemmas. 

 

• Symbolic, non-numerical representation of knowledge  

In expert systems, there is no need for quantification and no need for the usage of 

numerical concepts. In view of the specific form of social science theories, this 

modelling concept offers a wide area of applications. The most important motivation 

for the use of knowledged based models was therefore the possibility to formalize and 

explicate verbal theories which are beyond quantitative mathematical modelling. For 

Brent (1986) the greatest appeal of these programs is their claim to be applicable to 

problems not having tractable solutions based on mathematical reasoning.  

 

• Separating domain specific code from other program elements  

The architecture of a knowledge based system implies a clear separation of the domain-

specific knowledge from other program elements. Regarding modelling, this partition 

corresponds to a division of theoretical knowledge from other parts of the programs 

serving as control, interface et cetera. Thus, it can be definitely determined which 

program parts represent theoretical parts. 

 

• Modularity and flexibility  

The consequence of this strict separation is a high degree of modularity and flexibility 

of the theoretical part. This means, that pieces of knowledge or modules simply can be 

added to the existing theoretical knowledge by adding rules, without changing other 

parts of the progam. In the same manner, pieces of the model can be modified or 

deleted easily by modifying or deleting certain rules. This has a very positive influence 

on the experimental character of computer modelling and theory construction. 
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• Explanation facilities  

Knowledge based systems have the ability to explain their reasoning. Computer 

models, which are able to explain their behavior, are important for validation, because 

the rules and assumptions can be shown and criticized. The expert system reasoning 

can be used for proofing the correctness of deductions or for showing the solution path. 

In general, better insights into the functioning of the model are possible. This reduces 

the accusation that computer models are opaque. 

 

• Explication of logical features   

Automated inferencing in knowledge based models can eliminate the pitfalls of 

intuitive reasoning and flaws of verbal theory building. These flaws stem primarily 

from the limits on the processing capacity of the human brain like the small short term 

memory or various biases that may distort the inference process. For example, theories 

may hinge on the researcher's values, information is processed selectively, "desirable" 

conclusions are more easily drawn. Contrary to the intuitive, brain-based inferencing, 

computer-based inferencing can be made reliable and reproducible. In contrast to 

human scientists, knowledge based systems can deduce complete and correct 

conclusions from a big mass of data. This means concretely: The set of all valid 

propositions can be derived from given premises. The consistency of a theory can be 

proven by deriving no contradictions. The soundness of postulated conclusions can be 

shown. New hypotheses can be derived. 

 

For Brent (1986), the expert system may play a role analogously to that of a good research 

assistant, checking the logic of the researcher, tracing out implications of changing an 

assumption, answering questions about its reasoning, and identifying the source of 

particular bits of knowledge. Of course, an AI approach has not only advantages but has 

also some difficulties and problems. For example, converting verbal model descriptions 

into symbolic terms is far from easy in general. In practice, the implementation of 

professional expert systems is often supported by a special "knowledge engineer" who 

transforms the verbal and vague expert knowledge to formal if-then-rules. Further, in 

complex problems it can be difficult to follow the reasoning of an expert system, so the 

user can be confused in the same way than as traditional models.  
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3. Theory driven AI-modelling 
 

There are two fundamental ways to use AI-modelling for theory building. So far, a view of 

computer modelling was implicitly presented, which Herbert Simon calls theory driven 

science. Theory driven science means, that the starting position is an existing theory which 

should be represented in some or all aspects in form of a symbolic model. In one word: one 

tries to transform a theory to a runable program. If one is successful, the program 

represents the theory or parts of it more or less. In a pure theory driven approach, empirical 

data are not significant. 

 

Why should we make computer programs out of theories? We should do this, because 

there are some decisive advantages to have a theory modelled in form of a program, some 

mentioned above. To give only a few further key words: formalization, executability, 

experimental power, teaching. One of the most important reasons for modelling a theory is 

scientific discovery: in the theory driven approach, this means for example, the discovery 

of new theoretical conclusions, gaps, or inconsistencies. However, while theory driven 

science in traditional modelling was restricted to a high degree to numerical concepts, the 

knowledge based approach frees social sciences modelling from these restrictions. The 

knowledge based approach implies a valuable, more flexible and more applicable 

instrument of theory driven modelling. Let's illustrate the theory driven approach with a 

few concrete examples. 

 

A very early, but prototypical example is Gullahorn/Gullahorn's (1963) computer model of 

Homan's interaction theory. Gullahorn/Gullahorn translated Homan's not in expert system 

form, but into a qualitative computer program using IPL-V, an early Lisp-like language. 

One could say, that the program represents Homans theory to a big part.  

 

In the eighties, a lot of modellers rely explicitly on the knowledge based paradigm. Each of 

the following programs exemplifies important advantages and aims of the theory driven 

approach. 

 

Sylvan/Glassner (1985) translated theoretical assertions of Simmels "Conflict and the web 

of group affiliations" into a rule-based program consisting of 223 rules. They used the 
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program to determine whether the theory is internally contradictory and whether the central 

tennet of Simmel's work - the conflict-cohesion hypothesis - can be deduced. It was shown, 

that the verbal assumptions of Simmel were not sufficient to deduce the hypothesis.  

 

Brent (1986) describes a Prolog program which uses Goffman's dramaturgical framework 

to analyze various examples of social interaction. Goffman's model represents a kind of 

sociological knowledge which has resisted attempts at formalization with mathematical 

models. These programs, so Brent, may one day be used as teaching tools to acquaint 

students with particular theoretical perspectives, and as aids to assist in refining and 

extending social theories.  

 

The research group of Michael Masuch (Center for Computer Science in Organization and 

Management, Amsterdam) translated various theories from organizational sociology to 

first order logic and if-then-rules. Using a theorem prover for deductions it was feasible to 

draw all possible inferences from the theory's assumptions. Glory/Masuch/Marx (1990) 

clarified the structure of Mintzberg's contingency theory and encountered some 

terminological problems at various points during the formalization process. Another 

example by Péli/Bruggeman/Masuch/Nualláin (1992) is the logic translation of 

organizational ecology by Michael Hannan and John Freeman. The application of a 

theorem prover demonstrated, that the chosen part was consistent - with one provision. 

Further, a set of new theorems were discovered and some postulated conclusions could not 

be deduced from the assumptions.  

 

It should be clear that these four examples represent a pure theory driven approach. All 

models start with explicitly existing theories and translate theoretical assumptions to 

qualitative program statements, partly discovering new and unknown theoretical and 

logical features. In all of these studies empirical data were not relevant. 

 

4. Data driven AI-modelling 
 

The counterpart of a top-down perspective is a bottom-up perspective: the data driven 

approach. In contrast to the theory driven procedure data driven science starts vice versa 

with empirical data or the input-output behavior of the real system without an explicitly 
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given theory. The modeller tries to write a computer program which generates the 

underlying empirical data or input-output(i-o)-behavior of the system. Typically, models 

are produced in a generate-and-test-procedure. Generate-and-test means writing program 

code which tries to model the i-o-behavior of the real system first of all roughly. Using the 

generated code one tests the i-o-behavior and improves it as long as the i-o-behavior 

doesn't correspond to the real system.  

 

The data driven approach is very popular in cognitive modelling, for example in modelling 

problem solving processes. Langley, Simon and others (1987: 33) give a short abstract of 

this procedure in their "Scientific Discovery": "We can write in an information processing 

language - a symbolic rather than numerical language - a computer program that describes, 

say, the processes that intelligent adults are hypothesized to use in solving some class of 

problems. We can then present the program and some human subjects with identical 

problems and compare their behaviors. From the computer we will obtain a trace, from the 

human subjects a verbal and written protocol of their behavior while they were solving the 

problems. We can then test the program - our theory of the behavior - by comparing the 

trace with the protocol, just as any theory is tested by comparing the system path it predicts 

with data showing the actual path". 

 

As the quotation shows, the goal of this approach is the discovery of mechanisms, of 

hypotheses or a theory, which describes the underlying phenomena. Permanent model 

improving and fitting will lead to more adequate models which fit the empirical system 

better and better. It will give insights into the complex empirical system and thus 

theoretical structures can develop. In my opinion, the data driven modelling is at least as 

useful as the theory driven approach. The reason is, that our existing, empirical confirmed 

theories can not be better than the best theories which come to our mind. Efforts to 

improve the conditions of theory building in the social sciences will therefore lead to better 

empirical confirmed theories (Glory/Masuch/Marx 1990: 81). Knowledge based data 

driven models will improve these conditions in a decisive and fruitful manner.  

 

The Teamwork project by Doran (1985) can serve as the first simulation example for this 

approach. Teamwork is intended to permit the study of task planning and task execution 

and of the mechanisms of cooperation and communication between actors. Its aim is to use 

the study of this modelled multi-actor system to further understandings of real systems - 
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"both those that might be constructed and those that are in existence around us". As far as 

can be seen, Doran doesn't use an explicitly given theory but he tries to model empirical 

phenomena by generating computer behavior, which corresponds to empirical data. 

 

Banerjee (1986) uses a Prolog program to explain the development of social structures. For 

explaining social structures he uses the scheme concept from AI and cognitive psychology. 

He argues that social structures endure only when the preferences and judgments of 

participants prompt them to act in ways that reinforce the preferences and judgments of 

other participants. When actions of each set of participants reinforced the preferences and 

judgments of others, that particular social structure tended to reproduce itself and to be 

stable over time. This program can be regarded as an example where theoretical structures 

are developed from data and - as Benfer/Brent/Furbee (1990: 26) say - as "use of artificial 

intelligence programming strategies where the AI program becomes the theory itself". 

 

The expression "development of theoretical structures from data driven computer 

programs" has a precise equivalent in artificial intelligence. Under the label "machine 

learning", computers are programmed to discover empirical laws from data (Langley et al 

1987; Slezak 1989). For example, given the rough data by Robert Boyle, one program is 

reported to have no difficulty finding the law relating gas pressure and volume. A well-

known family of these discovery models are the Bacon programs. Their results are 

published in papers like "Rediscovery Chemistry with the Bacon System" or 

"Rediscovering Physics with Bacon 3" (Langley 1979). Bacon 3 is a knowledge based 

system using a few simple heuristics to solve a broad range of tasks. The rules detect 

constancies and trends in data and lead to the formulation of hypotheses. Bacon 3 has 

shown its generality by rediscovering versions of the ideal gas law, Kepler's third law, 

Coulomb's law, Ohm's law and more. The discovering procedures are not limited to 

quantitative laws. For example, Glauber discovers qualitative regularities in chemistry. 

 

By the way, these programs demonstrate that apparently there exists a logic of inductive 

reasoning - in contrast to what Popper says. In any case, for the social sciences the careful 

hypothesis can be stated: inductive learning programs could be implemented for the 

discovery of regularities in social science data too. However, these systems must be able to 

handle statistical laws. A first beginning is maybe Garsons (1987) paper "The role of 

inductive expert system generators in the social science research process". Garson 
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successfully applies a classification and rule generating algorithm to historical data 

matrices.  

 

Until now, the concepts of theory driven and data driven science were introduced as ideal 

cases. However, in practice the dividing line between theory driven and data driven 

approaches is often not as clear as it seems here but more fuzzy or mixed. For example, 

one can build-in (parts of) a theory in a data driven procedure or vice versa or one can go 

back and forth from theory to data and so on.  

 

5. A mixed approach: discovery of theoretical explanations for group 

processes 
 

In this last section, an example of the author's work is given. It's an instance for a mixed 

approach, where the procedure is the following: starting with a model of a rather vague 

theory, the consequences of the model inputs were investigated. The computational data, 

which were produced by this model, were compared to empirical data. To make a better fit, 

the model was changed, run again and started up again. In this back and forth procedure 

the goal was to discover new und specific hypotheses and explanations for empirical 

phenomena which the theory dealt with. 

 

The modelling object was a micro-sociological structural theory: the transitivity model by 

Holland/Leinhardt (1971). Generalizing Heider's balance theory, the transitivity model 

deals with interpersonal relations in small groups, especially friendship choices. The 

central claim is that relations in these groups become more transitive over time and - as a 

consequence - lead to a hierarchical structuring of cliques. Transitivity tendency means, 

that if x is a friend of y and y is a friend of z then - on the long run - x will also become a 

friend of z. Fig. 1 is an example of a potential friendship network, represented by a graph 

structure. The nodes represent actors, and the arrows (or arcs) "directed relations" between 

the actors. Interpreted as a friendship network, the arc pointing between a and b means, 

that a is a friend of b. Fig 1 is an intransitive structure, because transitivity does not hold 

for all members of this network. For example, k is a friend of h and h a friend of f, but k is 

not a friend of f as the transitivity rule requires. Note, the elements of a sub-graph, in 
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which all members choose all other members, are called cliques. Thus, {a,b,c} and {f,g,h} 

are two cliques. 

 

a

bc

g f

i j

k

d e

l

 
Fig.1: An example of an intransitive network structure. 

 

The transitive graph model was confirmed by a lot of studies (for example Davis 1970, 

Hallinan 1974). In the original model however, there is a gap of how these graphs become 

more transitive and why. Although the theory is supported by empirical data, it gives no 

explanation for the development of transitive structures. Further, the empirical content of 

the theory is very low. Hummell/Sodeur (1987) for example have criticized that there are 

no mechanisms that could explain the emergence, development, stabilization and changing 

of transitive structures. Opp (1984) criticizes the low empirical content of the theory, 

which means, that the development of more transitive structures is truly predicted, but 

these structures can be realized in a lot of alternatives. There is no prediction, how the 

transitivity tendency will be developing concretely. However, the more the number of 

alternatives, the lower the content of a theory.  

 

In a computational approach, an attempt was made, to detect and investigate interesting 

theoretical hypotheses, which should explain the development of transitivity in friendship 

choices and should increase the empirical content. This was done by changing from theory 

to data and vice versa. These kind of computer experiments can precede and support 

empirical research because they can clarify the hypotheses and discover formal and 
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substantial interesting features of a theory. For example, some assumptions are maybe not 

very sensible, while others can be interesting candidates for empirical investigations. Thus, 

computer experiments can be an important kind of formalized and controlled thought 

experiments, which support empirical research. 

 

A Prolog program was written that firstly represents the essential concepts of the theory in 

the architecture of an expert system. It has the ability to explain its reasoning and to trace 

the chains of reasoning. Secondly, step by step procedures were implemented, which 

transformed intransitive networks into transitive structures. Logically, these procedures are 

equivalent to a specialization of the qualitative Holland/Leinhardt law of transitivity 

tendency. The structural consequences of these procedures were observed and compared to 

empirical data. If the produced consequences did not fit the qualitative data, they were 

varied to make a better fit. 

 

Formally, there are two fundamental ways to increase transitivity in an intransitive 

structure. Assume, r(x,y) and r(y,z) are two existing relations in a (friendship) database but 

r(x,z) is missing - in contrast to the requirement of the transitivity rule. A first approach for 

generating more transitivity is simply to add the relation r(x,z) to the knowledge base 

(Add-Rule). Thus, transitivity could be generated by checking all triples <x,y,z> and 

adding r(x,z) whenever r(x,y) and r(y,z) does hold. A second approach is to delete one of 

the relations r(x,y) or r(y,z) in the data base. In this case, the if-part of the transitivity rule 

does not apply and the rule is not violated. Thus, "vacuous" transitivity could be generated 

by checking all triples <x,y,z> and delete r(x,y) or r(y,z), whenever these two relations are 

in the data base, but r(x,z) is not included (Delete-Rule). Note: in both cases the changing 

(adding or deleting) of a relation has a potential effect on the transitivity of other triples.  

 

These two basic procedures are very primitive, but can serve as potential starting position. 

First, the Add-Rule seems to be the one which es empirically preferred the most. In real 

group processes, transitivity is "resolved through transitive closure rather than through the 

development of vacuous transitivity" (Holland/Leinhardt 1971: 123). Second, we assume 

cliques as a starting position for the correction process, because in these sub-groups the 

cohesion is extremely strong - compared to actors which are not clique members. Thus, the 

"transitivity pressure" is stronger in cliques than in non-clique-members.  
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By pressing the "run-button" with this specification of the Add-Rule, the simulation 

generated transitive structures. However, these structures did not fit the empirical data. 

Using different data sets in many runs, cliques were unified when making intransitive 

networks more transitive. For example, the separated cliques {a,b,c} and {d,e,f} in an 

intransitive starting network, can be unified to the clique {a,b,c,d,e,f} in the generated 

transitive structure. A closer look shows that cliques are combined whenever there are 

cycles between cliques. A cycle between clique A and clique B is a directed path from a 

clique member of A to a clique member of B and back again to A. The pooling of cliques, 

however, is an unacceptable fact because empirically this doesn't occur. 

 

The data implied that the transitivity mechanism should be refined. Thus, the constraint 

was added so not to pool existing cliques. This implied, not only adding relations, but 

removing relations, as the union of the cliques was threatened. Further, the data suggested, 

that the transitivity machine should start with cliques of high status order. A clique C1 has 

a higher status than a clique C2 if and only if more actors voted for the members of C1 

than for the members of C2 - or graph theoretical: if more arcs point at C1 than at C2. In 

this manner, the generation of a set of theoretical interesting procedures was continued 

which had as a consequence transitive structures. These procedures fit the empirical data 

better and better.  

Fig. 2 shows a generated transitive structure using the data of Fig. 1. As a result, a 

hierarchical transitive structure was produced with two cliques {a,b,c,d,e} and {g,h,f}. 

Clique {g,h,f} has a very low status, whereas clique {a,b,c,d,e} has a very high status. 

Note: for every member of the network the transitivity rule holds. 
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Fig. 2: The model generated transitive structure of the intransitive graph in Fig. 1. 

 

The so-produced transitivity mechanism has powerful explanation facilities for important 

group processes. They can serve as structural explanations for dynamic clique 

development. In detail, the computer based transitivity model generates and explains the 

following tendencies: 

 

(a) Destroying of existing cliques 

Although cliques are very cohesive sub-structures and will usually not be destroyed in the 

specialized model too, in some cases they are disbanded. On the way to more transitivity, 

cliques will be destroyed if and only if two or more cliques are connected via co-cliqual 

nodes. A co-cliqual node is an actor, who is a member of at least two cliques. Which clique 

will be destroyed depends on the status of the clique. For example, in the four 2-cliques in 

Fig. 4 two of them are disbanded and only the cliques with the highest status stay alive. 
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a b dc e

a b dc e
 

Fig. 3: Chains of cliques will be destroyed when the graph becomes transitive. 

 

(b) Integrating new members into existing cliques 

On the way to more transitivity, cliques will expand their number of members, if the non-

members are connected to these cliques by cycles. For example, in the intransitive graph of 

Fig. 1 the non-clique-actors d and e are joined with the clique {a,b,c} by a cyclus (e.g. e-a-

c-e or d-c-e-d). By making this graph more transitive, there is a tendency of integrating d 

and e to the clique, and this dynamic process is finished in a complete transitive graph. 

 

(c) Emergence of new cliques 

On the way to more transitivity, cliques will emerge from those actors, who are connected 

via cycles. Every cycle in an intransitive graph will be completed to a clique in a transitive 

graph. Thus, the cycle on the left side of Fig. 3 will become a clique in a transitive 

structure. Metaphorically speaking, the cycle is the "egg cell" for the emergence of cliques 

when using the structure model of the transitive graph. 

 

c d

ba

c

a

d

b

 
Fig. 4: A cycle in an intransitve structure (left side) will be completed to a clique in a transitive structure 
(right side). 
 

The experiments with the computer program indicate a very important role for the cycles in 

the transitivity theory and in the explanation of group processes. Cycles are critical graph 

theoretical concepts in the transitivity model and in the explaining of group processes. The 

discovery of the importance of cycles is a very critical and sensitive theoretical feature of 

the Holland-Leinhardt-theory.  
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To summarize, the following steps were carried out: 

1. Some logical possibilities, how graphs become more transitive, were implemented in 

rule-form; 

2. Regarding empirical data, these transitivity rules were modified and made "empirically 

more adequate"; 

3. The result was a transitivity rule which could explain a number of dynamic group 

processes such as clique developing, clique expanding and clique destroying. 

The discovered mechanisms are not inductively reasoned directly by the program, but by 

experimenting with the program. They can be viewed as research hypotheses, which are 

candidates for empirical investigation.1 

 

6. Conclusion 
 

The given example shows the role of a knowledge based program as investigator of 

theoretical concepts and as an idea finder for empirical and theoretical hypotheses. The 

presented work uses AI-techniques but roots in graph theoretical - ergo mathematical - 

concepts. In this example, the explicit advantage of AI-techniques is reduced to the 

representation of qualitative (relational) data and to the explanation facilities. 

 

In general, AI-techniques can both be used for investigating and improving existing 

theories and for generating new and better theories from empirical data. AI can support the 

process of scientific development analogously like some formal aids in mathematical 

modelling are doing. A lot of authors emphasize AI-modelling as being much more 

significant in cultural and social studies than, for example, modelling by mathematical 

equations. An extreme position states that AI will take the same role in the social sciences 

which mathematics had in the physical sciences: "Artificial Intelligence will ultimately 

come to play the role vis-a-vis the psychological and social sciences that mathematics, 

from the seventeenth century on, has done for the physical sciences" (Allport 1980: 31). 

 

Although we have argued for AI in this paper, we do not share a too uncritical enthusiasm. 

In fact, many researchers also deny a significant role that AI plays in the social sciences. 

                                                
1 By the way, eliminating the knowledge base - i.e. facts and rules of the Holland-Leinhardt-theory - the 

program can be used as an expert system shell for implementing other theories. For further details see 
Manhart (1995). 
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Additionally, there are a lot of problems for applying AI and expert system techniques to 

social theories. Thus, a good strategy is a moderate optimism. In our view, AI is not a 

revolution - as Allport's proposition suggests - but rather an evolution in the development 

of new modelling techniques. Beyond some very useful parts of mathematics, statistics and 

traditional computer modelling, AI is one new tool to formalize and state more precisely 

social science knowledge. We will do best, if we select from the modelling tool box those 

instruments which are most adequate for our purposes. Presumably, AI will at least play a 

significant and essential role in the competition of modelling tools in the future. 
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